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A Fala como Biomarcador de Carga Emocional em Aplicações Clínicas
Speech as an Emotional Load Biomarker in Clinical Applications

L. F. Coelho 

Resumo:
Introdução: Os profissionais de saúde enfrentam frequen-

temente cargas emocionais significativas no seu trabalho, in-
cluindo o impacto de emoções negativas, como o stress e a 
ansiedade, que podem ter graves consequências no desem-
penho das suas funções de prestação de cuidados de saúde 
imediatos e também na sua própria saúde a longo prazo. 
Neste artigo, é proposto um algoritmo de estimativa do stress 
baseado na classificação de emoções de valência negativa 
em gravações de fala.

Métodos: É proposto um pipeline de aprendizagem auto-
mática de ponta a ponta. São considerados cenários de mo-
delos de decisão distintos, o VGG-16 e o SqueezeNet, que 
partilham uma entrada comum de espetrograma de potência 
Q constante para representação acústica. Os sistemas são 
treinados e avaliados utilizando os conjuntos de dados de fala 
emocional RAVDESS e TESS.

Resultados: O sistema foi avaliado para a classificação 
de um conjunto de emoções (problema multiclasse) e tam-
bém para a classificação de emoções negativas e neutras, 
distinguindo-as das positivas (problema binário). Os resulta-
dos obtidos são comparáveis aos dos sistemas anteriormente 
registados, com o modelo SqueezeNet a oferecer uma pe-
gada significativamente mais pequena, permitindo aplicações 
versáteis. Uma exploração mais aprofundada do espaço de 
parâmetros do modelo não foi exaustiva e por isso é promis-
sora para a melhoria do desempenho.

Conclusão: O sistema proposto pode constituir uma 
abordagem viável para a estimativa de um biomarcador não-
-invasivo de baixo custo para emoções negativas. Isto per-
mite ativar alertas e desenvolver ações de mitigação para a 
presença de emoções negativas, sendo uma ferramenta de 
gestão adicional para os serviços de saúde que permite man-
ter a qualidade e maximizar a sua disponibilidade.

Palavras-chave: Aprendizagem Automática; Biomarca-
dores; Emoções; Fala.

Abstract:
Introduction: Healthcare professionals often contend with 

significant emotional burdens in their work, including the im-
pact of negative emotions, such as stress and anxiety, which 
can have profound consequences on immediate and long-
-term healthcare delivery. In this paper a stress estimation al-
gorithm is proposed based on the classification of negative 
valence emotions in speech recordings.

Methods: An end-to-end machine learning pipeline is pro-
posed. Two distinct decision models are considered, VGG-16 
and SqueezeNet, while sharing a common constant Q power 
spectrogram input for acoustic representation. The system is 
trained and evaluated using the RAVDESS and TESS emotio-
nal speech datasets.

Results: The system was evaluated for individual emotion 
classification (multiclass problem) and also for negative and 
neutral or positive emotion classification (binary problem). The 
results achieved are comparable to previously reported syste-
ms, with the SqueezeNet model offering a significantly smaller 
footprint, enabling versatile applications. Further exploration of 
the model's parameter space holds promise for enhanced per-
formance.

Conclusion: The proposed system can constitute a fea-
sible approach for the estimation of a low-cost non-invasive 
biomarker for negative emotions. This allows to raise alerts and 
develop mitigating actions to the burden of negative emotions, 
being an additional management tool for healthcare services 
that allows to maintain quality and maximize availability.

Keywords: Biomarkers; Emotions; Machine Learning; 
Speech.

Introduction
In healthcare facilities, medical professionals frequently en-

counter a variety of stressors due to the demanding nature of 
their work. These stressors encompass patient care pressures, 
including the responsibility for accurate diagnoses and critical 
treatment decisions, as well as the emotional toll of witnessing 
patients' suffering. Medical staff also contend with substan-
tial workloads, time constraints, and the challenges of effective 
communication, along with administrative burdens and ethi-
cal dilemmas. Additionally, job security concerns, interperso-
nal conflicts, and the fear of medical errors can contribute to 
anxiety and other types of negative emotions. Over time, pro-
viding empathetic care may also lead to compassion fatigue. 
Healthcare workers must navigate all these emotions while still 
maintaining patient safety and advocating for their needs.
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The emotionally strong context faced by medical profes-
sionals in healthcare facilities carries several associated risks. 
Negative emotions, especially when prolonged in time, can 
lead to burnout, affecting job satisfaction and retention, while 
impairing cognitive function and empathy, potentially compro-
mising patient safety and satisfaction. Mental health issues 
and physical health problems may emerge, exacerbating the 
risk of medical errors and decreased patient trust. High staff 
turnover can disrupt care continuity, and ethical dilemmas may 
lead to moral distress. Safety concerns, lapses in safety pre-
cautions, and unprofessional behavior pose additional risks to 
healthcare providers. Mitigating these risks necessitates heal-
thcare organizations prioritizing staff well-being, offering stress 
management programs, mental health support, and fostering 
a supportive work environment, ultimately enhancing both pa-
tient care quality and healthcare professionals' overall health 
and job satisfaction. Hence, addressing these challenges is 
essential to support the well-being of medical professionals 
and ensure the provision of high-quality care.

Monitoring or measuring induced emotional charge is not 
only crucial to evaluate the quality of the work environment and 
to quantify its impact on each individual but also to plan miti-
gation measures and minimize deleterious effects. Quantifying 
negative emotions, the ones who should be mitigated, can be 
achieved through a wide range of methods. These include self-
-report scales and questionnaires, where providers complete 
assessments like the Perceived Stress Scale1 or the Masla-
ch Burnout Inventory2 to gauge their stress levels subjectively. 
Physiological measures such as heart rate monitoring throu-
gh wearable devices, cortisol level analysis in saliva, urine, or 
blood, skin conductance measurements, pupil dilation assess-
ments, and EEG to record brain activity offer objective insights 
into stress responses. Behavioral observations, involving the 
analysis of speech patterns, facial expressions,3 and body lan-
guage, can provide additional indicators of stress levels. Bio-
metric wearables,4 activity and sleep trackers, thermal imaging, 
and short ecological momentary assessments (EMA) through 
mobile devices all contribute to real-time stress monitoring. By 
these methods, independently or combined, healthcare facili-
ties can gain a comprehensive understanding of anxiety and 
stress levels among their staff and tailor support accordingly.

Speech analysis can be used to access a wide spectrum 
of diseases patterns5-8 and it is also useful as an emotional 
biomarker, offering several advantages over other methods. 
First and foremost, it is a low-cost non-invasive and passive 
method, which means it does not require physical contact or 
instrumentation on the individual being assessed. This makes 
it comfortable and minimally disruptive during stress measu-
rement, particularly in healthcare settings. Another significant 
advantage is its ability to provide objective measurements of 
stress-related features. By relying on computational analy-
sis, it reduces the potential bias associated with self-report 
measures, enhancing the accuracy of stress assessment. 

Furthermore, speech analysis provides real-time monitoring, 
allowing for immediate intervention and support when stress is 
detected, which is particularly valuable in environments prone 
to heavy emotional load, like healthcare. It also allows for 
continuous assessment during conversations or interactions, 
offering a dynamic view of stress levels as they evolve over 
time. Additionally, machine learning algorithms can quantify 
emotion-related speech characteristics, enabling researchers 
and healthcare professionals to track and compare stress le-
vels across individuals and situations. Lastly, speech analy-
sis can be integrated with other biometric and physiological 
data sources, offering a more comprehensive understanding 
of stress responses.

In this manuscript, a stress estimation algorithm is propo-
sed based on the classification of negative valence emotions 
in speech samples.

Material and Methods
The general pipeline for the proposed system is represen-

ted in Fig. 1. The description of each of the diagram’s compo-
nents will be detailed in next sub-sections.    

Material
According with the multidimensional constructionist model 

of Lindquist9 there are several studies that consider, as pri-
mary emotional dimensions, the valence (the pleasantness of 
a stimulus, happy to unhappy), the arousal (the intensity of 
emotion provoked by a stimulus, excited to calm), and the 
dominance (the degree of control exerted by a stimulus, from 
controlled to in control). For the purposes of the current study, 
the valence axis was defined as dominant and the emotions 
from the datasets, after being mapped on the emotional axis, 
were grouped as “negative” and “positive or neutral”. 

The proposed system has an underlying machine learning 
decision model that must distinguish between two classes, 
negative emotions and neutral or positive emotions, making 
this a binary classification problem. 

This statistical nature of such an approach requires the 
existence of annotated data that allows to perform a prior su-
pervised learning stage, for adjusting the model’s parameters. 
For this purpose, the RAVDESS dataset,10 short for "Ryer-
son Audio-Visual Database of Emotional Speech and Song," 
was used. This is a popular multimodal dataset for emotion 
recognition research. It comprises a collection of audio and 
video recordings featuring 24 actors (12 males and 12 fema-
les) portraying a set of predefined emotions. It has metadata 
that encompasses seven emotional categories, with labels for 
calm, happy, sad, angry, fearful, disgust, and surprised, besi-
des neutral. Each expression recording exists in two levels of 
emotional intensity (normal or strong), making a total of 1440 
distinct recordings for the full dataset. The TESS dataset,11 
which stands for "Toronto Emotional Speech Set," was also 
used to enlarge the number of recordings. 

A FALA COMO BIOMARCADOR DE CARGA EMOCIONAL EM APLICAÇÕES CLÍNICAS
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This dataset contains a collection of professionally acted, 
high-quality audio recordings of 200 different sentences 
spoken by two actresses. These sentences are designed to 
convey a range of similar set of emotional expressions. The 
dataset is composed of 2800 recordings. 

The computational implementation of the proposed algo-
rithms was performed using the Python programming langua-
ge, the Librosa12 package for audio processing, and PyTorch13 
packages.

Methods
To further expand the number of recordings, the initial set 

was subjected to a data augmentation process where inten-
sity was varied, and noise was added. For each recording, 
two recordings were generated, one with an increased inten-
sity and another with a decreased intensity, both by a value 
of 10%. Additionally, for each recording, Gaussian noise was 
added, with random mean and standard deviation, while kee-
ping intensity at 10% of two standard deviations. With this 
process, from the initial 4240 recordings, a new extended da-
taset of 16 960 recordings was obtained.   

Due to computational performance limitations (both har-
dware and algorithms), earlier speech analysis systems used 
a set of features to represent, in a small dimension space, 
the most relevant characteristics. Praat14 but also the Geneva 
Minimalistic Acoustic Parameter Set (GeMAPS)15 or OpenSmi-
le16 are popular toolkits for this purpose. However, the pro-
cess of feature engineering (extraction and selection), requires 

specialized expertise and often involves extensive experimen-
tation to find the optimal feature subset. In addition, the fea-
ture subset and the proceeding classification model, can be 
tightly connected, which introduces complexity in the explora-
tion of the parameter set. Moreover, the feature selection pro-
cess is susceptible to substantial information loss, potentially 
detrimental to system performance. 

In the here proposed system, an end-to-end approach is 
used, eliminating the burden of the feature crafting step. For 
the time-frequency representation of the signal the constant Q 
power spectrogram was used. This is an alternative to the Fou-
rier spectrogram or to the Mel Frequency Cepstral Coefficients 
(MFCCs). The constant-Q transform (CQT) features frequency 
bins that are logarithmically spaced and each frequency bin 
corresponds to a fixed fractional increase in pitch. In addition, 
by choosing an appropriate parameterization, it is possible to 
achieve good temporal resolution for transient events while still 
capturing fine-grained frequency details. CQT is also better in 
the representation of pitch, a highly relevant aspect of emotional 
speech.17 In Fig. 2, a comparison of a linear Fourier spectrum 
can be observed side-by-side with a CQT power spectrum, for 
the same acoustic utterance. The recordings were processed 
in 2 seconds chunks with 0.5 seconds overlap.

For the decision model there is a wide range of network ar-
chitectures. In this case, two distinct models were selected for 
evaluation, VGG-1618 (with approx. 138 million parameters), 
for its good performance in speech related applications,19 
and SqueezeNet20 (with approx. 1.25 million parameters), for 

 
Figure 1: Functional diagram for the proposed emotional valence classification system, separated by training stage (top) and 
operation stage (bottom).
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its good compromise between computational footprint and 
modeling ability. Both networks require an input image with 
224x224 pixels resolution.  

For model training, a 10-fold validation strategy was used, 
where, for each iteration, the dataset was partitioned in 80% 
for training and 20% for validation. Using a transfer learning 
methodology, the models’ weight were initialized based on a 
pre-trained ImageNet21 setup. 

The training process was performed for 25 epochs and 
its duration was timed. Running a Python/PyTorch setup, in a 
i9-11900H with 32Gb RAM and a dedicated Nvidia GeForce 
RTX3050Ti, the VGG-16 model took around 3 hours to com-
plete, while, for SqueezeNet, 25 minutes were necessary.

For system evaluation, the metrics precision, recall, F-score 
and confusion matrix were used as objective performance indi-
cators. Considering TP as true positives, FP as false positives 
and FN as false negatives, the following equations were used:

Precision = TP / (TP+FP) (1)
Recall = TP / (TP+FN) (2)
F-score = 2*Precision*Recall / (Precision+Recall) (3)

Precision is a relevant metric that can be especially impor-
tant in healthcare scenarios, where false positive errors can 
have serious consequences, however, it should not be con-
sidered in isolation. Recall, also known as sensitivity or true 
positive rate, can be a good complementary metric, since it 
focuses on the completeness of positive predictions, helping 
to understand how well the classifier captures all the positive 
instances in the dataset. Finally, F-score, is based on a trade-
-off between precision and recall, offering a more robust pers-
pective of the results. However, on the downside, F-score is 
also prone to bias and it is invariant to TN, which should not 
be despised.

Results 
As a first evaluation scenario, to assess the feasibility of 

the proposed solution, the classification of each emotion was 
observed independently. In Table 1, the confusion matrix that 
resulted from this classification task is presented, where, on 
each cell, the VGG-16 and SqueezeNet values are shown se-
parated by a semicolon, respectively. The emotions that evi-
dence the least amount of confusion are calm (81.8%), neutral 
(81.4%) and angry (81.1%), for VGG-16, and disgust (80%), 
angry (78.4%) and calm (77.9%), for SqueezeNet. For both de-
cision models, it is possible to achieve a good discrimination 
for calm and angry emotions. Still in Table 1, in the two bot-
tom rows, class related precision and recall values are presen-
ted. With VGG-16, the classification of happy (84.2%), fearful 
(83.8%) and sad (82.1%) achieved the best precision marks, 
and with SqueezeNet, the same set of emotions allowed the 
best performance, with the order fearful (80.9%), sad (80.6%) 
and happy (80.4%). The surprise label was the hardest to clas-
sify for both decision models. concerning recall, calm, Neutral 
and Angry presented values near 81%, using VGG-16 and 
the emotions calm, angry and disgust were classified around 
2% lower, with SqueezeNet. Overall, SqueezeNet performed 
around 3.1% worse, on average, than VGG-16. F-score was 
0.770 and 0.739 for VGG-16 and SqueezeNet, respectively. 

For the second evaluation scenario, a binary classification 
task was considered, training the system to classify positive 
or negative valence for a given emotion. Using the previously 
described computational setup, a time of around 2 hours and 
30 minutes was necessary to train the VGG-16 network while 
25 minutes, as in the first scenarios, were required to train the 
SqueezeNet network.

The obtained results for the binary problem are shown in 
Table 2. For VGG-16, the precision (or positive predictive va-
lue-PPV) is 86.6% and the negative predictive value (NPV) is 

 
Figure 2: Spectrograms representations of “Say the word when.” using a linear frequency spectrum (left) and a constant-Q spec-
trum (right).
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90.0%, while SqueezeNet achieved 85.4% and 87.5%, res-
pectively. In this scenario, all the values are above the best 
results obtained for the multiclass problem. For recall, a similar 
panorama is observed, with 88.5% (PPV) and 88.3% (NPV) 
for VGG-16, and 86.3% (PPV) and 87.5% (NPV). F-score was 
0.884 and 0.866, for VGG-16 and SqueezeNet, both more 
than 0.1 above the previous results.

Discussion
The presented evaluation methodology and results were su-

pported by pre-recorded datasets, which is useful for perfor-
mance comparisons between distinct machine learning models. 

The results that were obtained for the classification of each 
emotion independently allowed to understand the feasibility 
of the proposed processing pipeline and classification sys-
tem. Performance could be further improved by exploring the 
parameter space or by fine-tuning the time-frequency repre-
sentation. Nevertheless, the primary purpose of the system is 
to deliver estimates of positive or negative emotions, a more 
straightforward machine learning problem.     

However, for real-life applications, further performance 
evaluation scenarios must be posed. Factors such as ba-
ckground noise, multiple voices or dialectal variations, among 
many others, can hamper acoustic pattern identification.  
Speech characteristics can also vary significantly based on 
the context of the conversation and the individual's communi-
cation style, creating an additional challenge.  

The proposed emotion recognition technology can be 
applied to doctors and healthcare providers to enhance 
their well-being and the quality of patient care. By monito-
ring healthcare professionals' emotional states, such as stress 
and burnout, this technology can facilitate early intervention 
and support, ultimately benefiting their mental health. It can 
also aid in refining communication skills, promoting empathy, 
and providing valuable feedback for professional develop-
ment. Furthermore, it enables healthcare providers to better 
understand and respond to patient emotions, fostering pa-
tient-centered care and improving overall patient satisfaction. 
Moreover, emotion recognition can assist in ethical decision-
-making, enhance teamwork and collaboration, and contribu-
te to research and quality improvement efforts in healthcare. 

Emotion recognition technology can be a valuable tool for 
patients as well, offering numerous benefits in healthcare settin-
gs. It can assist patients in understanding and managing their 
emotional well-being, particularly in chronic illness manage-
ment, mental health care, or during acute medical situations. By 
providing real-time feedback on their emotional states, patients 
can become more aware of their mental health needs and can 
communicate more effectively with healthcare providers. Besi-
des, emotion recognition systems can be used to assess pain 
levels objectively, aiding in pain management and ensuring that 
patients receive appropriate care and pain relief. 

Finally, the integration of emotion recognition systems 
into telemedicine settings can help bridge the gap created 

Table 1: Confusion matrix for independent emotion classification, considering two distinct decision models, and class related 
evaluation metrics (precision and recall in the two bottom rows). Values are presented in percentage for models VGG-16 and 
SqueezeNet respectively, separated by a semicolon.

Real\Est. Happy Calm Surprised Neutral Sad Disgust Fearful Angry

Happy
67.6%; 
63.4%

5.6%; 
5.6%

5.6%; 
5.6%

2.8%; 
4.2%

5.6%; 
5.6%

4.2%; 
5.6%

2.8%; 
4.2%

5.6%; 
5.6%

Calm
2.6%; 
2.6%

81.8%; 
77.9%

3.9%; 
5.2%

2.6%; 
3.9%

2.6%; 
3.9%

0.0%; 
0.0%

2.6%; 
2.6%

3.9%; 
3.9%

Surprised
5.7%; 
5.7%

0.0%; 
2.9%

80.0%; 
74.3%

0.0%; 
0.0%

2.9%; 
2.9%

5.7%; 
5.7%

2.9%; 
5.7%

2.9%; 
2.9%

Neutral
0.0%; 
0.0%

9.3%; 
11.6%

7.0%; 
7.0%

81.4%; 
76.7%

0.0%; 
0.0%

0.0%; 
2.3%

2.3%; 
2.3%

0.0%; 
0.0%

Sad
1.4%; 
1.4%

5.6%; 
5.6%

0.0%; 
1.4%

2.8%; 
1.4%

77.5%; 
76.1%

4.2%; 
4.2%

4.2%; 
4.2%

4.2%; 
5.6%

Disgust
0.0%; 
0.0%

0.0%; 
0.0%

5.0%; 
5.0%

5.0%; 
5.0%

0.0%; 
0.0%

80.0%; 
80.0%

5.0%;
 5.0%

5.0%; 
5.0%

Fearful
3.8%; 
5.0%

3.8%; 
3.8%

5.0%; 
5.0%

5.0%; 
5.0%

2.5%; 
2.5%

3.8%; 
5.0%

71.3%; 
68.8%

5.0%; 
5.0%

Angry
1.4%; 
2.7%

0.0%; 
0.0%

2.7%; 
2.7%

4.1%; 
4.1%

4.1%; 
4.1%

6.8%; 
8.1%

0.0%; 
0.0%

81.1%; 
78.4%

Precision
84.2%; 
80.4%

80.8%; 
77.9%

60.9%; 
56.5%

70.0%; 
67.3%

82.1%; 
80.6%

66.7%; 
61.5%

83.8%; 
80.9%

77.9%; 
76.3%

Recall
67.6%; 
63.4%

81.8%; 
77.9%

80.0%; 
74.3%

81.4%; 
76.7%

77.5%; 
76.1%

80.0%; 
80.0%

71.3%; 
68.8%

81.1%; 
78.4%
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by remote consultations. Healthcare providers can assess 
patient emotions and well-being, compensating for the ab-
sence of in-person interaction. This process can be episodic 
or recurrent in time, tracking evolution or trends.

In all cases, consent and privacy must be paramount in 
the implementation of such technology, and either healthca-
re professionals and patients should have control over how 
their emotional data is used and shared. 

Conclusion
In this paper an end-to-end emotional valence classi-

fication system based on speech samples was presented 
with the purpose of estimating emotional stressors. The 
presented developments were supported by widely known 
datasets and tools. Two decision models were trained for 
the purpose: VGG-16 and SqueezeNet. Remarkably, the 
SqueezeNet-based approach yielded comparable results 
to other reported works, all while maintaining a significantly 
smaller resource footprint. This feature enables deployment 
on mobile devices or low-performance computing platforms. 
The study demonstrates the viability of an end-to-end pipeli-
ne and hints at further enhancements that can be achieved 
by fine-tuning various parameters. When employed ethically 
and with the individuals’ best interests in mind, emotion re-
cognition technology can be a social empowering tool but 
also a resourceful indicator of healthcare. 
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