Pandemic-Time Uncertainty by SARS-CoV-2: The Role of Epidemiological Research
DOI:
https://doi.org/10.24950/rspmi/COVID19/B.Nunes/C.M.Dias/S/2020Keywords:
COVID-19, Coronavirus Infections, Epidemiologic Methods, Epidemiologic Research Design, PandemicsDownloads
References
Zhu N, Zhang D, Wang W, Li X, Yang B et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020; 382:727–33. doi: 10.1056/NEJMoa2001017.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395: 497–506. doi: 10.1016/S0140-6736(20)30183-5.
ECDC: Event Background-COVID-19. [acedido em 15/5/2020] Disponível em: https://www.ecdc.europa.eu/en/novel-coronavirus/event-background-2019.
ECDC: COVID-19 situation update for the EU/EEA and the UK, as of 10 May 2020 [acedido em 15/5/2020] Disponível em: https://www.ecdc.europa.eu/ en/cases-2019-ncov-eueea
Portugal, Direcção-Geral da Saúde: Plano Nacional de Preparação e Resposta à Doença por novo coronavírus (COVID-19). [acedido em 15/5/2020] Disponível em: https://covid19.min-saude.pt/wp-content/uploads/2020/03/Plano-de-Contingência-Novo-Coronavirus_Covid-19.pdf
Houlihan CF, Whitworth JA. Outbreak science: recent progress in the detection and response to outbreaks of infectious diseases. Clin Med. 2019;19:140-4. doi:10.7861/clinmedicine.19-2-140
WHO: Managing epidemics: key facts about major deadly diseases.
Geneva: World Health Organization; 2018. [acedido em 15/5/2020] Disponível em: https://www.who.int/emergencies/diseases/managing-epidemics-interactive.pdf
Wallinga J, Teunis P. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol. 2004;160:509–16. doi: 10.1093/aje/kwh255.
Cori A, Ferguson NM, Fraser C, Cauchemez S. A new framework and software to estimate time-varying reproduction numbers during epidemics. Am J Epidemiol. 2013;178:1505-12. doi: 10.1093/aje/kwt133.
Leung K, Wu JT, Liu D, Leung GM. First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: a modelling impact assessment. Lancet. 2020;395:1382-93.
Lipsitch M, Finelli L, Heffernan RT, Leung GM, Redd SC, 2009 H1n1 Surveillance Group. Improving the evidence base for decision making during a pandemic: the example of 2009 influenza A/H1N1. Biosecur Bioterror. 2011;9: 89–115.
Nunes B, Natário I, Lucília Carvalho M. Nowcasting influenza epidemics using non-homogeneous hidden Markov models. Stat Med. 2013;32:2643-60. doi: 10.1002/sim.5670.
Höhle M, Van der Heiden M. Bayesian nowcasting during the STEC O104:H4 outbreak in Germany, 2011. Biometrics. 2014;70: 993–1002.
Gloeckner S, Krause G, Hoehle M. Now-casting the COVID-19 epidemic: The use case of Japan. March 2020 medRxiv 2020.03.18.20037473 doi:1 0.1101/2020.03.18.20037473.
Tsang TK, Wu P, Lin Y, Lau EHY, Leung GM, Cowling BJ. Effect of changing case definitions for COVID-19 on the epidemic curve and transmission parameters in mainland China: a modelling study. Lancet Public Health. 2020;5:e289-e296. doi: 10.1016/S2468-2667(20)30089-X.
Estimation of the current development of the SARS-CoV-2 epidemic in Germany – nowcasting. Epidemiologisches Bulletin. 17/2020 Robert Koch Institute. [acedido em 15/5/2020] Disponível em: https://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2020/Ausgaben/17_20.pdf?__ blob=publicationFile
Nicoll A, Ammon A, Amato Gauci A, Ciancio B, Zucs P, Devaux I, Plata F, Mazick A, Mølbak K, Asikainen T, Kramarz P. Experience and lessons from surveillance and studies of the 2009 pandemic in Europe. Public Health. 2010;124:14-23. doi: 10.1016/j.puhe.2009.12.001. Erratum in: Public Health. 2010;124:300.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2023 Medicina Interna