Immunology of Coronavirus-19 Disease (COVID-19): A Perspective for the Clinician in the First 4 Months of the Emergence of SARS-CoV-2

Authors

  • Luís Delgado Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Portugal; CINTESIS, Centro de Investigação em Tecnologias e Serviços de Saúde, Universidade do Porto, Porto, Portugal https://orcid.org/0000-0003-2375-9071
  • José Laerte Boechat Serviço de Imunologia Clínica, Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal Fluminense, Niterói/ RJ, Brasil; Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Portugal https://orcid.org/0000-0002-9738-8210
  • Inês Chora Serviço de Medicina Interna, Departamento de Medicina, Hospital Pedro Hispano, Unidade Local de Saúde de Matosinhos, Senhora da Hora, Matosinhos, Portugal; Faculdade de Medicina, Universidade do Porto, Porto, Portugal https://orcid.org/0000-0003-4750-2326

DOI:

https://doi.org/10.24950/rspmi/COVID19/FMUP/S/2020

Keywords:

Coronavirus, Coronavirus Infections, COVID- 19, Immunopathology, Pandemics

Abstract

In the last four months, since the emergence of a pandemic infection by a new highly pathogenic strain of beta coronavirus in humans, COVID-19, we have witnessed the fast sharing on digital platforms of the most diverse scientific publications, an experience also lived for the first time by the international medical community. In this review of the latest information on SARS-COV-2 immunobiology, we focused on the hypotheses that support a defective innate and acquired immunity to the virus, and the contribution of a dysfunctional immune response for the progression and mortality associated with the disease. Based on this new information, we point out the main immunotherapy strategies targeting the virus, the dysfunctional immune response and the disease prophylaxis (immunization). Improving our knowledge on the pathogen-host interactions will open the way to identify the best strategies for the diagnosis, treatment and control of COVID-19, as well as to the best preventive measures.

Downloads

Download data is not yet available.

References

Tyrrell DAJ, Bynoe ML. Cultivation of a novel type of common-cold virus in organ cultures. Br Med J. 1965;1:1467-70. 10.1136/bmj.1.5448.1467

Heymann DL, Shindo N; WHO Scientific and Technical Advisory Group for Infectious Hazards. COVID-19: what is next for public health? Lancet.

;395:542-5. doi:10.1016/S0140-6736(20)30374-3

WHO Director-General; World Health Organization opening remarks at the media briefing on COVID-19 – [accessed 11 March 2020 WHO https:// www.who.int/dg/ speeches/detail/who-director-general-sopeningremarks-at-the-media-briefing-on-covid-19---11- march-2020 .

Zagury-Orly I, Schwartzstein RM. Covid-19 - A Reminder to Reason [pu- blished online ahead of print, 2020 Apr 28]. N Engl J Med. 2020;10.1056/

NEJMp2009405. doi:10.1056/ NEJMp2009405

Lu X, Zhang L, Du H, Zhang J, Li Y, Qu J, et al. SARS-CoV-2 Infection in Children. N Engl J Med. 2020;382:1663-5. doi:10.1056/NEJMc2005073

Hoehl S, Rabenau H, Berger A, Kortenbusch M, Cinatl J, Bojkova D, et al. Evidence of SARS-CoV-2 Infection in Returning Travelers from Wuhan, China. N Engl J Med. 2020;382:1278-80. doi:10.1056/NEJMc2001899

Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323:1574-81. doi:10.1001/jama.2020.5394

Lippi G, Mattiuzzi C, Sanchis-Gomar F, Henry BM. Clinical and demographic characteristics of patients dying from COVID-19 in Italy versus China. J Med Virol. 2020 (in press). doi:10.1002/jmv.25860

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382:727-33. doi:10.1056/NEJMoa2001017

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [published correction appears in Lancet. 2020 Jan 30]. Lancet. 2020;395:497-506. doi:10.1016/S0140-6736(20)30183-5

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study [published correction appears in Lancet. 2020 Mar 28;395(10229):1038] [published correction appears in Lancet. 2020 Mar 28;395(10229):1038]. Lancet. 2020;395(10229):1054-1062. doi:10.1016/ S0140-6736(20)30566-3

Okba NMA, Müller MA, Li W, Wang C, Geurtsvan Kessel CH, Corman VM, et al. Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibody Responses in Coronavirus Disease 2019 Patients. Emerg Infect Dis. 2020;26:10.3201/eid2607.200841. doi:10.3201/eid2607.200841

Guo L, Ren L, Yang S, Xiao M, Chang D, Yang F, et al. Profiling Early Hu- moral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clin Infect Dis. 2020 (in press). doi:10.1093/cid/ciaa310

Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis. 2020 (in press). doi:10.1093/cid/ciaa344

Rubin R. Testing an Old Therapy Against a New Disease: Convalescent Plasma for COVID-19 JAMA. 2020 (in press).doi:10.1001/jama.2020.7456

Wu F, Wang A, Liu M, Wang Q, Chen J, Xia S et al. Neutralizing anti-body responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. medRxiv 2020.03.30.20047365; doi: https://doi.org/10.1101/2020.03.30.20047365

Soresina A, Moratto D, Chiarini M, Paolillo C, Baresi G, Focà E, et al. Two X-linked agammaglobulinemia patients develop pneumonia as COVID- 19 manifestation but recover. Pediatr Allergy Immunol. 2020 (in press). doi:10.1111/pai.13263

Quinti I, Lougaris V, Milito C, Cinetto F, Pecoraro A, Mezzaroma I, et al. A possible role for B cells in COVID-19?: Lesson from patients with Agam- maglobulinemia. J Allergy Clin Immunol. 2020 (in press). doi:10.1016/j. jaci.2020.04.013

Matricardi PM, Dal Negro RW, Nisini R. The first, holistic immunological model of COVID-19: implications for prevention, diagnosis, and public health measures. Pediatr Allergy Immunol. 2020 (in press). doi:10.1111/ pai.13271

Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific analysis of the SARSCoV- 2 glycan shield. bioRxiv preprint 2020. [e-pub] doi. org/10.1101/2020.03.26.010322

Cheng Y, Cheng G, Chui CH, Lau FY, Chan PK, Ng MH, et al. ABO blood group and susceptibility to severe acute respiratory syndrome [pu- blished correction appears in JAMA. 2005;294:794. Cheng, Yufeng [corrected to Cheng, Yunfeng]. JAMA. 2005;293:1450-1. doi:10.1001/ jama.293.12.1450-c

Zhao J, Yang Y, Huang H, Li D, Gu D, Lu X, et al. Relationship between the ABO Blood Group and the COVID-19 Susceptibility. medRxiv PREPRINT. 2020. [e-pub] doi.org/10.1101/ 2020.03.11.20031096.

Zhou Y, Lu K, Pfefferle S, Bertram S, Glowacka I, Drosten C, et al. A single asparagine-linked glycosylation site of the severe acute respiratory syndro- me coronavirus spike glycoprotein facilitates inhibition by mannose-binding lectin through multiple mechanisms. J Virol. 2010;84:8753-64. doi:10.1128/ JVI.00554-10

Zhang H, Zhou G, Zhi L, Yang H, Zhai Y, Dong X, et al. Association between mannose-binding lectin gene polymorphisms and susceptibility to severe acute respiratory syndrome coronavirus infection. J Infect Dis. 2005;192:1355-61. doi:10.1086/491479

Tomaiuolo R, Ruocco A, Salapete C, Carru C, Baggio G, Franceschi C, et al. Activity of mannose-binding lectin in centenarians. Aging Cell. 2012;11:394- 400. doi:10.1111/j.1474-9726.2012.00793.x

Andreakos E, Zanoni I, Galani IE. Lambda interferons come to light: dual function cytokines mediating antiviral immunity and damage control. Curr Opin Immunol. 2019;56:67-75. doi:10.1016/j.coi.2018.10.007

Boudewijns R, Thibaut HJ, et al. STAT2 signaling as double-ed- ged sword restricting viral dissemination but driving severe pneumonia in SARS-CoV-2 infected hamsters. bioRxiv preprint doi: https://doi. org/10.1101/2020.04.23.056838.

Blanco-Melo D, Nilsson-Payant B, Liu W, Uhl S, Hoagland D et al Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020 (in press) doi: 10.1016/j.cell.2020.04.026.

Deng X, Chen Y, Mielech AM, et al. Structure-Guided Mutagenesis Alters Deubiquitinating Activity and Attenuates Pathogenesis of a Murine Corona- virus. J Virol. 2020 (in press). doi:10.1128/JVI.01734-19

García-Sastre A. Ten Strategies of Interferon Evasion by Viruses. Cell Host Microbe. 2017;22:176-84. doi:10.1016/j.chom.2017.07.012

Galani IE, Triantafyllia V, Eleminiadou EE, Koltsida O, Stavropoulos A, Ma- nioudaki M, et al. Interferon-λ Mediates Non-redundant Front-Line Antiviral Protection against Influenza Virus Infection without Compromising Host Fit- ness. Immunity. 2017;46:875-90.e6. doi:10.1016/j.immuni.2017.04.025

Klinkhammer J, Schnepf D, Ye L, Schwaderlapp M, Gad HH, Hartmann R, et al. IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission. Elife. 2018;7:e33354. doi:10.7554/ eLife.33354

Ye L, Schnepf D, Staeheli P. Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat Rev Immunol. 2019;19:614-25. doi:10.1038/s41577-019-0182-z

Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507-13. doi:10.1016/S0140- 6736(20)30211-7

Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020 (in press). doi:10.1093/cid/ciaa248

Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, et al. The landscape of lung bronchoalveolar immune cells in COVID-19 revealed by single-cell RNA sequencing. medRxiv, 2020. doi:10.1101/2020.02.23.20026690

Wong CK, Lam CW, Wu AK, Ip WK, Lee NL, Chan IH, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 2004;136:95-103. doi:10.1111/j.1365-2249.2004.02415.x

Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C et al. Pathological findings of COVID-19 associated with acute respiratory distress syndromeLancet Respir Med. 2020;8:420-2. doi:10.1016/S2213-2600(20)30076-X

Li H, Liu L, Zhang D, Xu J, Dai H, Tang N, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020 (in press). doi:10.1016/

S0140-6736(20)30920-X

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression.

Lancet. 2020;395:1033-4. doi:10.1016/S0140-6736(20)30628-0

Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;1-12.

doi:10.1038/s41577-020-0311-8

Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, et al. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 2020;27:1451-4. doi:10.1038/s41418-020-0530-3

Shoenfeld Y. Corona (COVID-19) time musings: Our involvement in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning. Autoimmun Rev. 2020;19:102538. doi:10.1016/j.autrev.2020.102538

Herold T, Jurinovic V, Arnreich C, Hellmuth JC, von Bergwelt- Baildon M, Klein M, Weinberger T. Level of IL-6 predicts respiratory failure in hospitalized symptomatic COVID-19 patients. Pre-print. doi: https://doi.org/10.1101/2020.04.01.20047381

Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y, et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl Sci Rev. 2020 (in press). doi:10.1093/nsr/nwaa041.

Chu H, Chan JF, Wang Y, et al. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis. 2020 (in press). doi:10.1093/cid/ciaa410

Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395:1417-8. doi:10.1016/S0140-6736(20)30937-5

Muus C, Luecken MD, Eraslan G, Waghray A, Heimberg G, Sikemma L, et al. Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells. bioRxiv 2020.04.19.049254; doi: https://doi.org/10.1101/2020.04.19.049254

Padoan A, Cosma C, Sciacovelli L, Faggian D, Plebani M. Analytical performances of a chemiluminescence immunoassay for SARS-CoV-2 IgM/IgG and antibody kinetics. Clin Chem Lab Med. 2020 (in press). doi:10.1515/ cclm-2020-0443

Monsalvo AC, Batalle JP, Lopez MF, Krause JC, Klemenc J, Hernandez JZ, et al. Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes. Nat Med. 2011;17:195-9. doi:10.1038/nm.2262

Dahlke C, Heidepriem J, Kobbe R, Santer R, Koch T, Fathi A, et al. Distinct early IgA profile may determine severity of COVID-19 symptoms: an immunological case series. medRxiv preprint doi: https://doi. org/10.1101/2020.04.14.20059733

Ciceri F, Beretta L, Scandroglio AM, Colombo S, Landoni G, Ruggeri A, et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc. 2020 (in press).

Liu L, Wei Q, Lin Q, Fang J, Wang H, Kwok H, et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. 2019;4:e123158. doi:10.1172/jci.insi- ght.123158

Walls AC, Xiong X, Park YJ, Tortorici MA, Snijder J, Quispe J, et al. Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Cell. 2019;176:1026-1039.e15. doi:10.1016/j.cell.2018.12.028

Wan Y, Shang J, Sun S, Tai W, Chen J, Geng Q, et al. Molecular Mecha- nism for Antibody-Dependent Enhancement of Coronavirus Entry. J Virol. 2020;94:e02015-19. doi:10.1128/JVI.02015-19

Kanduc D, Shoenfeld Y. On the molecular determinants of the SARS-CoV-2 attack. Clin Immunol. 2020;215:108426. doi:10.1016/j.clim.2020.108426

Thevarajan I, Nguyen THO, Koutsakos M, Druce J, Caly L, van de Sandt CE, et al. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat Med. 2020;26:453-5. doi:10.1038/s41591-020-0819-2

Peteranderl C, Herold S. The Impact of the Interferon/TNF-Related Apoptosis-Inducing Ligand Signaling Axis on Disease Progression in Respiratory Viral Infection and Beyond. Front Immunol. 2017;8:313. doi:10.3389/fimmu.2017.00313

Tian S, Xiong Y, Liu H, Niu L, Guo J, Liao M, Xiao SY. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Pathol. 2020;1-8. doi:10.1038/s41379-020-0536-x

Wang J, Hajizadeh N, Moore EE, McIntyre RC, Moore PK, Veress LA, et al. Tissue Plasminogen Activator (tPA) Treatment for COVID-19 Associated Acute Respiratory Distress Syndrome (ARDS): A Case Series. J Thromb Haemost. 2020 (in press). doi:10.1111/jth.14828

Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angio- tensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11:875-9. doi:10.1038/nm1267

Amanat F, Krammer F. SARS-CoV-2 Vaccines: Status Report. Immunity. 2020;52:583-9. doi:10.1016/j.immuni.2020.03.007

Thanh Le T, Andreadakis Z, Kumar A, Roman RG, Tollefsen S, Saville M, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19:305-6. doi:10.1038/d41573-020-00073-5

Mahase E. Covid-19: What do we know so far about a vaccine? BMJ. 2020;369:m1679. doi:10.1136/bmj.m1679

Shang W, Yang Y, Rao Y, Rao X. The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines. NPJ Vaccines. 2020;5:18. doi:10.1038/s41541-020- 0170-0

Zhou Q, Wei X-S, Xiang X, Wang X, Wang Z-H, Chen V, et al. Interferon-a2b treatment for COVID-19. MedRxiv 2020:2020.04.06.20042580.https://doi. org/10.1101/2020.04.06.20042580.

Prokunina-Olsson L, Alphonse N, Dickenson RE, Durbin JE, Glenn JS, Hart- mann R, et al. COVID-19 and emerging viral infections: The case for interferon lambda. J Exp Med. 2020;217:e20200653. doi:10.1084/jem.20200653

Hung IF, Lung K, Tso EY, Liu R, Chung TW, Chu M, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020 (in press). doi: 10.1016/S0140- 6736(20)31042-4

Francois B, Jeannet R, Daix T, Walton AH, Shotwell MS, Unsinger J, et al. Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial. JCI Insight. 2018;3. doi:10.1172/jci.insight.98960

Thiébaut R, Jarne A, Routy JP, Sereti I, Fischl M, Ive P, et al. Repeated Cycles of Recombinant Human Interleukin 7 in HIV-Infected Patients With Low CD4 T-Cell Reconstitution on Antiretroviral Therapy: Results of 2 Phase II Multicenter Studies. Clin Infect Dis. 2016;62:1178-85. doi:10.1093/cid/ciw065

Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment of seve- re COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A. 2020(in press). doi:10.1073/pnas.2005615117

Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID-19: A single center experience. J Med Virol. 2020 (in press). doi:10.1002/ jmv.25801

Gritti G, Raimondi F, Ripamonti D, Riva I, Landi F, Alborghetti L, et al. Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support. MedRxiv 2020:2020.04.01.20048561. https://doi.org/10.1101/2020. 04.01.20048561.

Michot JM, Albiges L, Chaput N, Saada V, Pommeret F, Griscelli F, et al. Tocilizumab, an anti-IL6 receptor antibody, to treat Covid-19-related respiratory failure: a case report. Ann Oncol. 2020 (in press). doi:10.1016/j. annonc.2020.03.300

Roumier M, Paule R, Groh M, Vallee A, Ackermann F. Interleukin-6 blockade for severe COVID-19. MedRxiv 2020:2020.04.20.20061861. https://doi.org/10.1101/2020.04.20.20061861.

Wampler Muskardin TL. IV anakinra for macrophage activation syndrome may hold lessons for treatment of cytokine storm in the setting of COVID19. ACR Open Rheumatol. 2020 (in press). doi:10.1002/acr2.11140

Shakoory B, Carcillo JA, Chatham WW, Amdur RL, Zhao H, Dinarello CA, et al. Interleukin-1 Receptor Blockade Is Associated With Reduced Mortality in Sepsis Patients With Features of Macrophage Activation Syndrome: Reanalysis of a Prior Phase III Trial. Crit Care Med. 2016;44:275-81. doi:10.1097/CCM.0000000000001402

Weiss ES, Girard-Guyonvarc'h C, Holzinger D, de Jesus AA, Tariq Z, Picarsic J, et al. Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood. 2018;131:1442-55. doi:10.1182/blood-2017-12-820852

Vallurupalli M, Berliner N. Emapalumab for the treatment of relapsed/refractory hemophagocytic lymphohistiocytosis. Blood. 2019;134:1783-6. doi:10.1182/blood.2019002289

Lagunas-Rangel FA, Chávez-Valencia V. High IL-6/IFN-γ ratio could be associated with severe disease in COVID-19 patients. J Med Virol. 2020 (in press). doi:10.1002/jmv.25900

Feldmann M, Maini RN, Woody JN, Holgate ST, Winter G, Rowland M, et al. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet. 2020;395:1407-9. doi:10.1016/S0140-6736(20)30858-8

McDermott JE, Mitchell HD, Gralinski LE, Eisfeld AJ, Josset L, Bankhead A, et al. The effect of inhibition of PP1 and TNFα signaling on pathogenesis of SARS coronavirus. BMC Syst Biol. 2016;10:93. doi:10.1186/s12918-016- 0336-6

Jamilloux Y, El Jammal T, Vuitton L, Gerfaud-Valentin M, Kerever S, Sève P. JAK inhibitors for the treatment of autoimmune and inflammatory diseases. Autoimmun Rev. 2019;182390. doi:10.1016/j.autrev.2019.102390

Favalli EG, Ingegnoli F, De Lucia O, Cincinelli G, Cimaz R, Caporali R. COVID-19 infection and rheumatoid arthritis: Faraway, so close!. Autoim- mun Rev. 2020;19:102523. doi:10.1016/j.autrev.2020.102523

Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A. 2020;117:9490-9496. doi:10.1073/pnas.2004168117

Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA. 2020;323:1582-9. doi:10.1001/jama.2020.4783

Langhi DM, Santis GC, Bordin JO. COVID-19 convalescent plasma transfusion. Hematol Transfus Cell Ther. 2020 (in press). doi:10.1016/j.htct.2020.04.003

Cao W, Liu X, Bai T, et al. High-Dose Intravenous Immunoglobulin as a Therapeutic Option for Deteriorating Patients With Coronavirus Disease 2019. Open Forum Infect Dis. 2020;7:ofaa102. doi:10.1093/ofid/ofaa102

Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA. 2020 (in press). doi:10.1001/jama.2020.6019

Published

2021-12-21

How to Cite

1.
Delgado L, Laerte Boechat J, Chora I. Immunology of Coronavirus-19 Disease (COVID-19): A Perspective for the Clinician in the First 4 Months of the Emergence of SARS-CoV-2. RPMI [Internet]. 2021 Dec. 21 [cited 2024 Nov. 23];. Available from: https://revista.spmi.pt/index.php/rpmi/article/view/248

Issue

Section

Opinion Article