COVID-19 e Doença Cardiovascular: O Impacto da Pandemia

Autores

  • João Marcos de Menezes Zanatta Medical School of São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brasil https://orcid.org/0000-0001-5931-7377
  • Luiz Menezes Falcão MD, PhD, Department of Internal Medicine, University Hospital Santa Maria, Lisboa, Portugal; Faculty of Medicine, University of Lisbon; Centro Cardiovascular da Universidade de Lisboa, Lisboa, Portugal; Grupo Estudos de Cardiologia e Insuficiência Cardíaca do Instituto Bento da Rocha Cabral, Lisboa, Portugal https://orcid.org/0000-0003-3574-9807

DOI:

https://doi.org/10.24950/R/163/20/1/2021

Palavras-chave:

COVID-19, Doenças Cardiovasculares, Infecções por Coronavírus, SARS-CoV-2

Resumo

SARS-CoV-2, o novo coronavírus, surpreendeu o mundo com a sua capacidade de infecção, causando uma preocupação emergente de saúde pública com mais de 3 milhões de pessoas afetadas em apenas quatro meses. A taxa de mortalidade é variável entre os países, considerando as suas estruturas etárias e o percentual de comorbilidades. Os Idosos e as pessoas com doenças subjacentes são mais suscetíveis ao desenvolvimento de casos graves de COVID-19 e têm maior taxa de mortalidade. As doenças cardiovasculares têm uma importância particular, uma vez que a sua prevalência é elevada e considerando a fisiopatologia da infecção. O vírus usa os receptores da enzima de conversão da angiotensina (ECA) 2 para invadir as células humanas. Esses receptores estão principalmente nos pulmões e no coração. Além do dano viral direto, a hipóxia, a tempestade de citocinas e a libertação de catecolaminas também afetam esses órgãos. No coração, estudos mostraram que a COVID-19 pode causar miocardite, arritmias ventriculares, síndrome coronária aguda e insuficiência cardíaca. Além disso, a lesão cardiovascular pode ser a primeira manifestação de infecção viral em alguns casos, motivo de maior preocupação durante esta pandemia. Os inibidores da ECA e os bloqueadores dos receptores da angiotensina (BRA) são medicamentos de suma importância no tratamento de doenças cardiovasculares. No entanto, alguns estudos sugeriram preocupação com esses medicamentos na COVID-19, pois eles poderiam causar um aumento da ECA2 e aumentar a gravidade da infeção. Até onde sabemos, nenhum estudo demonstrou que inibidores da ECA ou ARA são prejudiciais e as principais sociedades cardiovasculares recomendam a continuidade do tratamento.

Downloads

Não há dados estatísticos.

Referências

Holmes KV. Sars-Associated coronavirus. N Engl J Med. 2003;348:1948–51.

Jevšnik M, Steyer A, Pokorn M, Mrviš T, Grosek Š, Strle F, et al. The role of human coronaviruses in children hospitalized for acute bronchiolitis, acute gastroenteritis, and febrile seizures: a 2-year prospective study. PLoS ONE. 2016;11:e0155555. doi: 10.1371/journal.pone.0155555.

Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. Severe acute respiratory syndrome-related coronavirus: the species and its viruses – a statement of the Coronavirus Study Group. bioRxiv. 2020. doi: https://doi.org/10.1101/2020.02.07.937862. Published in Nature Microbiol. doi: 10.1038/s41564-020-0695-z

Pal M, Berhanu G, Desalegn C, Kandi V. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update. Cureus. 2020. 12: e7423. doi:10.7759/cureus.7423

Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361:1319–25.

Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012; 367:1814–20.

Mahase, E. China coronavirus: WHO declares international emergency as death toll exceeds 200. BMJ. 2020; 368: m408. doi: 10.1136/bmj.m408.

World Health Organization, Coronavirus disease (COVID-2019) situation reports. [accessed 30 June 2020]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/

Dowd J, Rotondi V, Andriano L, Brazel DM, Block P, Ding X, et al. Demographic science aids in understanding the spread and fatality rates of COVID-19. [accessed 8 April 2020]. Available from: https://osf.io/se6wy/?view_only=c2f00dfe3677493faa421fc2ea38e295.

Sociedad Española de Imagen Cardíaca. https://ecocardio.com/documentos/covid-19/2060-covid-19-clinical-guidance-for-the-cardiovascular-care-team.html

Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020; 109:531-8. doi: 10.1007/s00392-020-01626-9.

Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17:259-60. doi: 10.1038/s41569-020-0360-5.

Huang CL, Wang YM, Li XW, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497-506.

Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 2020;5:831-40. doi: 10.1001/jamacardio.2020.1286.

Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi. 2020; 41:145-51. doi: 10.3760/cma.j.issn.0254-6450.2020.02.003.

Verity R, Okell L, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020;20:669-77. doi: 10.1016/S1473-3099(20)30243-7.

Ban KM. World economic and social survey 2007: Development in an aging world. New York: DESA, United Nations;2007.

United Nations, Department of Economic and Social Affairs, Population Division (2019). World Population Prospects 2019. https://www.un.org/development/desa/en

Worldometer. [access[accessed 8 April 2020]. Available from: ed 8 April 2020]. Available from: https://www.worldometers.info/coronavirus/

Pais RJ, Taveira N. Predicting the evolution and control of COVID-19 pandemic in Portugal. MedRxiv. 2020. doi: https://doi.org/10.1101/2020.03.28.20046250.

Worldometer. https://www.worldometers.info/coronavirus/ [accessed 02 May 2020].

United Nations, Department of Economic and Social Affairs, Population Division (2019). World Population Prospects 2019.https://population.un.org/wpp/

Coronavirus in New York: Latest Updates. Intelligencer. [accessed 24 April 2020]. Available from: https://nymag.com/intelligencer/article/new-york-coronavirus-cases-updates.html/

Cai JH, Wang XS, Ge YL, et al. The first case report of 2019 novel coronavirus infection in children in Shanghai. Zhong Hua Er Ke Za Zhi. 2020;58: E002. doi: 10.3760/cma.j.issn.0578 1310.2020.02.002.

Zheng F, Liao C, Fan Q, Chen H, Zhao X, Xie Z. et al.Clinical Characteristics of Children with Coronavirus Disease 2019 in Hubei, China. Curr Med Sci. 2020;40:1-6. doi: https://doi.org/10.1007/s11596-020-2172-6.

Dong Y, Mo X, Hu Y, Qi X, Jiang F, Jiang Z, et al. Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in China. Pediatrics. 2020 (in press). doi: 10.1542/peds.2020-0702.

Brodin P. Why is COVID-19 so mild in children? Acta Pediatr. 2020 (in press).

The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) — China, 2020[J]. China CDC Weekly. 2020; 2: 113-22.

Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020 (in press). doi: 10.1056/NEJMoa2002032.

Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005;309:1864-8.

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–3. doi: https://doi.org/10.1038/s41586-020-2012-7.

Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci. 2020;63:457–60. doi: https://doi.org/10.1007/s11427-020-1637-5.

Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020; 94:e00127-20. doi: https://doi.org/10.1128/JVI.00127-20.

Kuba K, Imai Y, Penninger JM. Multiple functions of angiotensin-converting enzyme 2 and its relevance in cardiovascular diseases. Circ J. 2013;77:301-8.

Rentzsch B, Todiras M, Iliescu R, Popova E, Campos LA, Oliveira ML, et al. Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension. 2008;52:967–73.

Kuba K, Imai Y, Ohto-Nakanishi T, Penninger JM. Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol Ther. 2010;128:119-28. doi: 10.1016/j.pharmthera.2010.06.003.

Serfozo P, Wysocki J, Gulua G, Schulze A, Ye M, Liu P, et al. Ang II (angiotensin II) conversion to angiotensin-(1-7) in the circulation is POP (prolyloligopeptidase)-dependent and ACE2 (angiotensin-converting enzyme 2)-independent. Hypertension. 2020;75,173–82. doi: https://doi.org/10.1161/HYPERTENSIONAHA.119.14071.

Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203:622–30. doi: https://doi.org/10.1002/path.1570.

Harmer D, Gilbert M, Borman R, et al. Quantitative mRNA expression profiling of ACE2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002;532:107–10.

Yang XH, Deng W, Tong Z, Liu YX, Zhang LF, Zhu H, et al. Mice transgenic from human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection. Comput Med. 2007;57:450–9.

Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203:622–30. doi: 10.1002/path.1560.

Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395:1417-18. doi: 10.1016/S0140-6736(20)30937-5.

Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020; 383:120-8. doi: 10.1056/NEJMoa2015432.

Giannisa D, Ziogas IA, Giannid P. Coagulation disorders in coronavirus infected patients: COVID-19, SARSCoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020;127: 104362. doi: 10.1016/j.jcv.2020.104362.

Oudit GY, Kassiri Z, Jiang C, Liu PP, Poutanen SM, Penninger JM, et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39:618-25. doi: 10.1111/j.1365-2362.2009.02153.x.

Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020 (in press). doi:10.1016/S2213-2600(20)30076-X.

Bojkova D, Wagner JUG, Shumliakivska M, Aslan GS, Saleem U, Hansen A, et al. SARS-CoV-2 infects and induces cytotoxic effects in human cardiomyocytes. bioRxiv 2020.06.01.127605. doi: 10.1101/2020.06.01.127605

Inciardi RM, Lupi L, Zaccone G, et al. Cardiac Involvement in a Patient With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. Published online March 27, 2020. doi:10.1001/jamacardio.2020.1096.

Li SS, Cheng CW, Fu CL, Chan Y, Lee M, Chan JW, et al. Left ventricular performance in patients with severe acute respiratory syndrome: a 30-day echocardiographic follow-up study. Circulation. 2003;108:1798-803. doi:10.1161/01.CIR.0000094737.21775.32.

Lazzerini PE, Boutjdir M, Capecchi PL. COVID-19, Arrhythmic Risk and Inflammation: Mind the Gap!. Circulation. 2020 (in press). doi: 10.1161/CIRCULATIONAHA.120.047293.

Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020;180:934–43. doi:10.1001/jamainternmed.2020.0994.

Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–5. https://doi.org/10.1016/j.ijid.2020.03.017

Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091. doi: http://dx.doi.org/10.1136/bmj.m1091.

Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020 (in press). doi:10.1001/jamacardio.2020.1017.

Dietz W, Santos-Burgoa C. Obesity and its Implications for COVID-19 Mortality. Obesity. 2020 (in press). doi:10.1002/oby.22818.

Vardavas CI, Nikitara K. COVID-19 and smoking: A systematic review of the evidence. Tob Induc Dis. 2020;18:20. doi:10.18332/tid/119324.

Zhou Z, Chen P, Peng H. Are healthy smokers really healthy?. Tob Induc Dis. 2016;14:35. doi:10.1186/s12971-016-0101-z.

Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA. 2020;323:1061-9. doi:10.1001/jama.2020.1585.

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020:S0140-6736(20)30566-3. doi:10.1016/S0140-6736(20)30566-3.

Long B, Brady WJ, Koyfman A, Gottlieb M. Cardiovascular complications in COVID-19, Am J Emerg Med. 2020 (in press) doi: https://doi.org/10.1016/j.ajem.2020.04.048.

Vio R., Zorzi A., Corrado D. (2020), Arrhytmias in Myocarditis. In: Caforio A. (eds) Myocarditis. Springer, Cham. https://doi.org/10.1007/978-3-030-35276-9_19

Ammirati E, Veronese G, Ciprian M, Moroni F, Garascia A, Brambatti M. Acute and Fulminant Myocarditis: a Pragmatic Clinical Approach to Diagnosis and Treatment. Current Cardiology Reports. 2018;20:114. doi: https://doi.org/10.1007/s11886-018-1054-z.

Yang C, Jin Z. An Acute Respiratory Infection Runs Into the Most Common Noncommunicable Epidemic—COVID-19 and Cardiovascular Diseases. JAMA Cardiol. 2020 (in press). doi:10.1001/jamacardio.2020.0934.

Bonow RO, Fonarow GC, O’Gara PT, Yancy CW. Association of Coronavirus Disease 2019 (COVID-19) With Myocardial Injury and Mortality. JAMA Cardiol. 2020 (in press). doi:10.1001/jamacardio.2020.1105.

Mahmud E, Dauerman HL, Welt FG, Messenger JC, Rao SV, Grines C, et al. Management of Acute Myocardial Infarction During the COVID-19 Pandemic. Journal of the American College of Cardiology.2020 (in press). doi: https://doi.org/10.1016/j.jacc.2020.04.039.

Tam CF, Cheung KS, Lam S, Wong A, Yung A, Sze M, et al. Impact of coronarvirus disease 2019 (COVID-19) outbreak on ST-segment elevation myocardial infarction care in Hong-Kong, China. Circ Cardiovasc Qual Outcomes. 2020 (in press). doi: https://doi.org/10.1161/CIRCOUTCOMES.120.006631.

Wu Q, Zhou L, Sun X, Yan Z, Hu C, Wu J, et al. Altered Lipid Metabolism in Recovered SARS Patients Twelve Years after Infection. Sci Rep. 2017;7:9110. doi: 10.1038/s41598-017-09536-z.

Chan KS, Zheng JP, Mok YW, Li YM, Liu Y-N, Chu CM. SARS: prognosis, outcome and sequelae. Respirology. 2003;8:S36-S40. doi: 10.1046/j.1440-1843.2003.00522.x.

Hui DS, Wong KT, Ko FW. The 1-year impact of severe acute respiratory syndrome on pulmonary function, exercise capacity, and quality of life in a cohort of survivors. Chest. 2005;128:2247.

Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020 (n press). doi:10.1007/s00134-020-05991-x.

Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18:844–7. doi: 10.1111/jth.14768.

Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005;111, 2605−10.

Patel VB, Zhong J-C, Grant MB, Oudit GY. Role of the ACE2/Angiotensin 1–7 Axis of the Renin–Angiotensin System in Heart Failure. Circ Res. 2016;118:1313–26. doi:10.1161/CIRCRESAHA.116.307708.

Mancia G, Rea F, Ludergnani M, Apolone G, Corrao G. Renin–angiotensin–aldosterone system blockers and the risk of Covid-19. N Engl J Med. 2020 (in press). doi: 10.1056/NEJMoa2006923.

Mehra MR, Desai SS, Kuy S, Henry TD, Patel AN. Cardiovascular disease, drug therapy, and mortality in Covid-19. N Engl J Med.2020 (in press). doi: 10.1056/NEJMoa2007621.

Reynolds HR, Adhikari S, Pulgarin C, Troxel AB, Iturrate E, Johnson SB, et al. Renin–angiotensin–aldosterone system inhibitors and risk of Covid-19. N Engl J Med. 2020 (in press). doi: 10.1056/NEJMoa2008975.

Li J, Wang X, Chen J, Zhang H, Deng A. Association of Renin-Angiotensin System Inhibitors With Severity or Risk of Death in Patients With Hypertension Hospitalized for Coronavirus Disease 2019 (COVID-19) Infection in Wuhan, China. JAMA Cardiol. 2020;5:825–30. doi:10.1001/jamacardio.2020.1624

Meng J, Xiao G, Zhang J, He X, Ou M, Bi J, et al. Renin-angiotensin system inhibitors improve the clinical outcomes of COVID-19 patients with hypertension. Emerg Microbes Infec. 2020;9:1,757-60. DOI: 10.1080/22221751.2020.1746200.

Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection?. Lancet Respir Med. 2020;8:e21. doi: 10.1016/S2213-2600(20)30116-8.

Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH. 2013 ACCF/AHA Guideline for the Management of Heart Failure: Executive Summary. J Am Coll Cardiol. 2013; 62:1495-539. doi: 10.1016/j.jacc.2013.05.020.

Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin–Angiotensin–Aldosterone System Inhibitors in Patients with Covid-19. N Engl J Med. 2020; 382:1653-9. doi: 10.1056/NEJMsr2005760.

Kreutz R, Algharably EAE-H, Azizi M, Dobrowolski P, Guzik T, Januszewicz A, et al. Hypertension, the renin–angiotensin system, and` the risk of lower respiratory tract infections and lung injury: implications for COVID-19: European Society of Hypertension COVID-19 Task Force Review of Evidence. Cardiovasc Res. 2020 (in press). doi:10.1093/cvr/cvaa097.

Sommerstein R, Kochen MM, Messerli FH, Gräni C. Coronavirus Disease 2019 (COVID-19): Do Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers Have a Biphasic Effect?. Journal of the American Heart Association. 2020;9:e016509. doi: https://doi.org/10.1161/JAHA.120.016509.

ESC Guidance for the Diagnosis and Management of CV Disease during the COVID-19 Pandemic. European Society of Cardiology. [Accessed 02 May 2020]. Available from: https://www.escardio.org/Education/COVID-19-and-Cardiology/ESC-COVID-19-Guidance.

Monteiro S, Caeiro D, Piçarra B, Gaspar A, Pires-Morais G. Pandemia COVID-19: Reorganização dos Cuidados ao Doente Cardíaco Agudo. Sociedade Portuguesa de Cardiologia. [Accessed 07 May 2020]. Available from: https://spc.pt/2020/04/15/pandemia-covid-19-reorganizacao-dos--cuidados-ao-doente-cardiaco-agudo.

Downloads

Publicado

20-09-2021

Como Citar

1.
de Menezes Zanatta JM, Menezes Falcão L. COVID-19 e Doença Cardiovascular: O Impacto da Pandemia. RPMI [Internet]. 20 de Setembro de 2021 [citado 18 de Dezembro de 2024];28(1):50-8. Disponível em: https://revista.spmi.pt/index.php/rpmi/article/view/88

Edição

Secção

Artigos de Revisão

Artigos Similares

Também poderá iniciar uma pesquisa avançada de similaridade para este artigo.