Stem Cell therapy for Myocardial Infarction and Heart Failure
Keywords:
stem cells, acute myocardial infarction, heart failure, myoblasts, ventricular remodelingAbstract
The cell-based therapy is being envisaged as a potential strategy
for myocardial repair in patients suffering from acute myocardial infarction or ischaemic heart failure. The present phase of
knowledge allows us to expect the use of skeletal myoblasts or
autologous stem cells to become safe, feasible and effective.
Available data suggest the benefit of the use of myoblasts in
cardiac function with improvement of the left ventricular ejection
fraction, decreasing of end diastolic and end systolic volumes.
Increasing of the contractility of the ischaemic area, diminishing
of the functional NYHA class and decreasing of the new cases
of revascularization and hospitalizations are envisaged. Nevertheless the mechanisms by which these cells provide repair are
still unknown. However the cell differentiation into myocites, the
promotion of angiogenesis, paracrine factors secretion which
increase the function of the surviving myocites, inhibition of cell
matrix destruction and of the apoptosis of cardiomyocites and
fusion between transplanted cells and resident cells have been
proposed as possible explanations.
We must underline that neither the best locus to collect stem
cells or the best way of their management is cleared up.
There are also some issues related to technical difficulties
and emerging complications that are still not solved. Hopefully
undergoing research will enlighten most of our doubts and will
allow us to reach conclusions.
Downloads
References
Hagege AA, Marolleau JP, Vilquin JT et al. Skeletal myoblast transplantation in ischemic heart failure: long-term follow-up of the first phase I cohort of patients. Circulation2006;114(1):I108-1113.
Kepez A., Oto, A. Cardiac stem cell therapy : hope for myocardial repair. E- journal volume 2007; vol5, nº31 .
Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction: experimental observations and clinical implications. Circulation 1990; 81: 1161-1172.
Ohtsuka M, Takano H, Zou Y, et al. Cytokine therapy prevents left ventricular remodeling and dysfunction after myocardial infarction through neovascularization. FASEB J 2004; 18: 851–853.
Wollert KC, Drexler H. Cell based therapy for heart failure. Curr Opin Cardiol 2006; 21: 234-239.
Jorgensen E, Ripa RS, Helqvist S, et al. In-stent neo-intimal hyperplasia after stem cell mobilization by granulocyte-colony stimulating factor. Preliminary intracoronary ultrasound results from a double-blind randomized placebo-controlled study of patients treated with percutaneous coronary intervention for ST-elevation myocardial infarction (STEMMITrial). Int J Cardiol 2006;111:174–177.
Fernandez-Aviles F, San Roman JA, Garcia-Frade J et al. Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res 2004; 95(7): 742-748.
Schachinger V, Assmus B, Britten MB et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol 2004; 44(8): 1690-1699.
Strauer BE, Brehm M, Zeus T et al. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J Am Coll Cardiol 2005; 46(9): 1651-1658.
Meyer GP, Wollert KC, Lotz J et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (Bone marrow transfer to enhance ST-elevation infarct regeneration) trial. Circulation 2006; 113(10): 1287-1294.
Lunde K, Solheim S, Aakhus S et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 2006; 355(12): 1199-1209.
Wollert KC, Meyer GP, Lotz J et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction:the BOOST randomised controlled clinical trial. Lancet 2004; 364: 141–148.
Ince H, Petzsch M, Kleine HD et al. Prevention of left ventricular remodeling with granulocyte colony-stimulating factor after acute myocardial infarction: final 1-year results of the Front-Integrated Revascularization and Stem Cell Liberation in Evolving Acute Myocardial Infarction by Granulocyte Colony-Stimulating Factor (FIRSTLINE-AMI) Trial. Circulation 2005; 112: I73– 180.
Ohki Y, Heissig B, Sato Y et al. Granulocyte colony-stimulating factor promotes neovascularization by releasing vascular endothelial growth factor from neutrophils. FASEBJ 2005;19:2005–2007.
Engelmann MG, Theiss HD, Hennig-Theiss C et al. Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating factor after subacute ST-segment elevation myocardial infarction undergoing late revascularization: final results from the G-CSF-STEMI (Granulocyte Colony-Stimulating Factor ST-Segment Elevation Myocardial Infarction) trial. J Am Coll Cardiol 2006; 48(8): 1712-1721.
Kang HJ, Kim HS, Zhang SY et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the magic cell randomised clinical trial. Lancet 2004; 363: 751–756.
Kang HJ, Kim HS, Koo BK et al. Intracoronary infusion of the mobilized peripheral blood stem cell by G-CSF is better than mobilization alone by G-CSF for improvement of cardiac function and remodeling: 2-year followup results of the Myocardial Regeneration and Angiogenesis in Myocardial Infarction with G-CSF and Intra-Coronary Stem Cell Infusion (MAGIC Cell) 1 trial. Am Heart J 2007; 153(2): 237.e1-8.
Zohlnhofer, Dietlind et al. Stem Cell Mobilization by Granulocyte ColonyStimulating Factor for Myocardial Recovery after Acute Myocardial Infaction : A Meta-Analysis. JACC 2008; 51: 1429-1437.
Memon IA, Sawa Y, Fukushima N et al. Repair of impaired myocardium by means of implantation of engineered autologous myoblast sheets. J Thorac Cardiovasc Surg 2005; 130(5): 1333-1341.
Dowell JD, Rubart M, Pasumarthi KB et al. Myocyte and myogenic stem cell transplantation in the heart. Cardiovasc Res 2003; 58: 336-350.
Hagege AA, Carrion C, Menasche P, et al. Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet 2003; 361(9356): 491-492.
Leobon B, Garcin I, Menasche P et al. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci USA 2003; 100: 7808-7811.
Menasché P, Hagége AA, Vilquin JT et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 2003; 41: 1078-1083.
Smits PC, Van Geuns RJ, Poldermans D et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure. J Am Cardiol 2003; 42: 2063-2069.
Siminiak T, Fiszer D, Jerzykowska O et al. Percutaneous trans-coronaryvenous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the POZNAN trial. Eur Heart J 2005; 26(12):1188-1195.
Strauer BE, Brehm M, Zeus T et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002; 106: 1913-1918.
Assmus B, Schachinger V, Teupe C et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCAREAMI). Circulation 2002; 106: 3009-3017.
Stamm, C. et al. Autologous bone-marrow stem cell transplantation for myocardial regeneration. The Lancet 2003; 361: 45-46
Chen SL, Fang WW, Ye F et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 2004; 94(1): 92-95
Schachinger V, Erbs S, Elsasser A et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 2006; 355(12): 1210-1221.
Hirsch A, Nijveldt R, van der Vleuten PA et al. Intracoronary infusion of autologous mononuclear bone marrow cells or peripheral mononuclear blood cells after primary percutaneous coronary intervention: rationale and design of the HEBE trial- a prospective, multicenter, randomized trial. Am Heart J 2006; 152(3): 434-441.
Seeger FH, Tonn T, Krzossok N et al. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur Heart J 2007; 28(6): 766-772.
Burt, Richard et al . Clinical Applications of Blood-Derived and Marrow-Derived stem Cells for Nonmalignant Diseases. JAMA 2008; 299: 925-936.
Martin-Rendon, Enca et al. Autologous bone marrow stem cells to treat acute myocardial infaction : a systematic review. EHJ 2008; 29: 1807-1818.
Perin EC, Dohmann HF, Borojevic R et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003; 107: 2294-2302.
Perin EC, Dohmann H, Borojevic R et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003; 107: 2294-2302.
Fazel, Shafie et al. Current Status of Cellular Therapy for Ischemic Heart Disease. Ann Thorac Surg 2005, 79: 2238 – 2247.
Cohn JN, Bristow MR, Chien KR et al. Report of the National Heart, Lung and Blood Institute special emphasis panel on heart failure research. Circulation 1997; 95: 766-770.
Zhan-quan L, Ming Z, Yuan-zhe J et al. The Clinical Study of autologous peripheral blood stem cell transplantation by intracoronary infusion in patients with acute myocardial infarction. Int J Cardiol 2007; 115: 52-56.
Pagani FD, DerSimonian H, Zawadzka A et al. Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. J Am Coll Cardiol 2003; 41: 879-888.
Fuchs S, Satler LF, Kornowski R et al. Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility study. J Am Coll Cardiol 2003; 41: 1721–1724.
Tse HF, Kwong YL, Chan J et al. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 2003; 361: 47-49.
Nyolczas N, Gyongyosi M, Beran G et al. Design and rationale for the Myocardial Stem Cell Administration After Acute Myocardial Infarction
(MYSTAR) Study: a multicenter, prospective, randomized, single-blind trial comparing early and late intracoronary or combined (percutaneous intra-myocardial and intracoronary) administration of nonselected autologous bone marrow cells to patients after acute myocardial infarction. Am Heart J 2007;153(2):212.e1-7.
Sutherland, F et al. From Stem Cells to Viable Autologous Semilunar Heart Valve. Circulation, 2005: 2783 – 2791.
Murray, F. The Stem – Cell Market – Patients and the Pursuit of scientific Progress. The New England Journal of Medicine, 2007: 2341-3.
Schachinger V, Erbs S, Elsasser A et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J 2006; 27(23):2775-2783.
Additional Files
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2023 Medicina Interna