Familial Chylomicronaemia Syndrome (Fcs): A Diagnostic Algorithm

Authors

  • Inês Colaço Serviço de Urgência, Centro Hospitalar Lisboa Norte, Hospital de Santa Maria, Lisboa, Portugal.
  • Francisco Araújo Serviço de Medicina, Hospital Lusíadas, Lisboa, Portugal
  • Patrício Aguiar Serviço de Medicina 1, Centro Hospitalar de Lisboa Norte, Hospital de Santa Maria, Lisboa, Portugal.
  • Diogo Cruz Serviço de Medicina, Hospital de Cascais, Cascais, Portugal
  • Mafalda Bourbon Instituto Nacional de Saúde Doutor Ricardo Jorge, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
  • João Sequeira Duarte Serviço de Endocrinologia, Centro Hospitalar de Lisboa Oriental, Hospital Egas Moniz, Lisboa, Portugal.
  • Manuel Teixeira Veríssimo Presidente do Conselho de Administração, Hospital Distrital da Figueira da Foz, Portugal.

DOI:

https://doi.org/10.24950/rspmi.r.92.4.2021

Keywords:

Algorithms; Decision Support Techniques; Hyperlipoproteinemia Type I/diagnosis

Abstract

Hypertriglyceridemia increases not only the cardiovascular risk but can also cause abdominal pain and recurrent pancreatitis when in very high levels. Familial chylomicronaemia syndrome (FCS) is a rare autosomal recessive disease that affects chylomicron metabolism. FCS is most commonly caused by mutation of the lipoprotein lipase (LPL) gene, which results in triglycerides 10 times higher than normal. The phenotypic resemblance makes the differential diagnosis with multifactorial chylomicronaemia very difficult, requiring genetic testing. Treatment has 2 goals: reducing cardiovascular risk as well as pancreatitis prevention. Volanevorsen is authorized for FCS treatment, acting by triglyceride clearance non-related to lipoprotein lipase. Phase 2 studies showed an apoC-III and TG reduction of 79.6% and 70.9% respectively; in phase 3 studies the TG reduction was 77% with minor adverse reactions. Data on the cardiovascular risk reduction are limited. We propose an algorithm for the approach of hypertriglyceridemia adapted to the Portuguese reality. Exclusion of secondary causes for hypertriglyceridemia begins in primary care; hospital referral is needed to confirm the diagnosis based on the score proposed by Moulin et al in 2018.

Downloads

Download data is not yet available.

References

Hegele RA, Ginsberg HN, Chapman MJ, Nordestgaard BG, Kuivenhoven JA, Averna M, et al; European Atherosclerosis Society Consensus Panel. The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol. 2014;2:655-66. doi: 10.1016/S2213-8587(13)70191-8.

Konstantinides SV, Torbicki A, Agnelli G, for the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J. 2014;35:3033- 69, 3069a-3069k. doi: 10.1093/eurheartj/ehu283. Erratum in: Eur Heart J. 2015;36:2666. Erratum in: Eur Heart J. 2015;36:2642.

Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/ NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139:e1082- -e1143. doi: 10.1161/CIR.0000000000000625. Erratum in: Circulation. 2019;139):e1182-e1186.

Mach F, Baigent C, Catapano AL, for the ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41:111-88. doi: 10.1093/eurheartj/ehz455.

Cortez-Dias N, Robalo Martins S, Belo A, Fiúza M; em nome dos Investigadores do Estudo VALSIM. Caracterização do perfil lipídico nos utentes dos cuidados de saúde primários em Portugal. Rev Port Cardiol. 2013;32:987- 96. doi: 10.1016/j.repc.2013.06.008.

Chait A, Eckel RH. The Chylomicronemia Syndrome Is Most Often Multifactorial: A Narrative Review of Causes and Treatment. Ann Intern Med. 2019;170:626-34. doi:10.7326/M19-0203

Paquette M, Bernard S, Hegele RA, Baass A. Chylomicronemia: Differences between familial chylomicronemia syndrome and multifactorial chylomicronemia. Atherosclerosis. 2019;283:137-42. doi: 10.1016/j.atherosclerosis.2018.12.019.

Moulin P, Dufour R, Averna M, Arca M, Cefalù AB, Noto D, et al. Identification and diagnosis of patients with familial chylomicronaemia syndrome (FCS): Expert panel recommendations and proposal of an "FCS score". Atherosclerosis. 2018 ;275:265-272. doi: 10.1016/j.atherosclerosis.2018.06.814.

Reeskamp LF, Tromp TR, Stroes ESG. The next generation of triglyceride- -lowering drugs: will reducing apolipoprotein C-III or angiopoietin like protein 3 reduce cardiovascular disease? Curr Opin Lipidol. 2020;31:140-6. doi: 10.1097/MOL.0000000000000679.

Florentin M, Kostapanos MS, Anagnostis P, Liamis G. Recent developments in pharmacotherapy for hypertriglyceridemia: what’s the current state of the art? Expert Opin Pharmacother. 2020;21:107-20. doi: 10.1080/14656566.2019.1691523.

Reiner Ž. Triglyceride-Rich Lipoproteins and Novel Targets for Anti-atherosclerotic Therapy. Korean Circ J. 2018;48:1097-119. doi: 10.4070/ kcj.2018.0343.

Minicocci I, Tikka A, Poggiogalle E, Metso J, Montali A, Ceci F, et al. Effects of angiopoietin-like protein 3 deficiency on postprandial lipid and lipoprotein metabolism. J Lipid Res. 2016;57:1097-107. doi: 10.1194/jlr.P066183.

Hegele RA, Berberich AJ, Ban MR, Wang J, Digenio A, Alexander VJ, et al. Clinical and biochemical features of different molecular etiologies of familial chylomicronemia. J Clin Lipidol. 2018;12:920-7.e4. doi: 10.1016/j. jacl.2018.03.093.

Blom DJ, O'Dea L, Digenio A, Alexander VJ, Karwatowska-Prokopczuk E, Williams KR, et al. Characterizing familial chylomicronemia syndrome: Baseline data of the APPROACH study. J Clin Lipidol. 2018;12:1234-43.e5. doi: 10.1016/j.jacl.2018.05.013.

Brahm AJ, Hegele RA. Chylomicronaemia--current diagnosis and futu re therapies. Nat Rev Endocrinol. 2015;11:352-62. doi: 10.1038/nrendo.2015.26.

Gaudet D, Brisson D, Tremblay K, Alexander VJ, Singleton W, Hughes SG, et al. Targeting APOC3 in the familial chylomicronemia syndrome. N Engl J Med. 2014;371:2200-6. doi: 10.1056/NEJMoa1400284.

Carr RA, Rejowski BJ, Cote GA, Pitt HA, Zyromski NJ. Systematic review of hypertriglyceridemia-induced acute pancreatitis: A more virulent etiology? Pancreatology. 2016;16:469-76. doi: 10.1016/j.pan.2016.02.011.

Davidson M, Stevenson M, Hsieh A, Ahmad Z, Crowson C, Witztum JL. The burden of familial chylomicronemia syndrome: interim results from the IN-FOCUS study. Expert Rev Cardiovasc Ther. 2017;15:415-23. doi: 10.1080/14779072.2017.1311786.

Davidson M, Stevenson M, Hsieh A et al. Examining the High Disease Burden and Impact on Quality of Life in Familial Chylomicronemia Syndrome Atherosclerosis 2018. Supplements 32:66 doi:10.1016/j.atherosclerosissup.2018.04.199

Ahmad Z, Halter R, Stevenson M. Building a better understanding of the burden of disease in familial chylomicronemia syndrome. Expert Rev Clin Pharmacol. 2017;10:1-3. doi: 10.1080/17512433.2017.1251839.

D. Gaudet, J. de Wal, K. Tremblay, S. Déry, S. van Deventer, A. Freidig, et al., Review of the clinical development of alipogene tiparvovec gene therapy for lipoprotein lipase deficiency, Atheroscler Suppl 2010;11:55-60. doi: 10.1016/j.atherosclerosissup.2010.03.004.

Dron JS, Wang J, Cao H, McIntyre AD, Iacocca MA, Menard JR, et al. Severe hypertriglyceridemia is primarily polygenic. J Clin Lipidol. 2019;13:80-8. doi: 10.1016/j.jacl.2018.10.006.

Tremblay K, Méthot J, Brisson D, Gaudet D. Etiology and risk of lactescent plasma and severe hypertriglyceridemia. J Clin Lipidol. 2011;5:37-44. doi: 10.1016/j.jacl.2010.11.004.

Arca M, Hsieh A, Soran H, Rosenblit P, O'Dea L, Stevenson M. The effect of volanesorsen treatment on the burden associated with familial chylomicronemia syndrome: the results of the ReFOCUS study. Expert Rev Cardiovasc Ther. 2018;16:537-46. doi: 10.1080/14779072.2018.1487290.

Ramírez-Bueno A, Salazar-Ramírez C, Cota-Delgado F, de la Torre-Prados MV, Valdivielso P. Plasmapheresis as treatment for hyperlipidemic pancreatitis. Eur J Intern Med. 2014;25:160-3. doi: 10.1016/j.ejim.2013.08.701.

Stock JK. Commentary on rare dyslipidaemia paper. Atherosclerosis. 2020;295:54-8. doi:10.1016/j.atherosclerosis.2019.12.012

Hegele RA, Tsimikas S. Lipid-lowering agents. Circ Res. 2019;124:386– 404.

Wang Y, Gusarova V, Banfi S, Gromada J, Cohen JC, Hobbs HH. Inactivation of ANGPTL3 reduces hepatic VLDL-triglyceride secretion. J Lipid Res. 2015;56:1296–307. doi: 10.1194/jlr.M054882

Graham MJ, Lee RG, Brandt TA, Tai LJ, Fu W, Peralta R, et al. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N Engl J Med. 2017;377:222–32. doi: 10.1056/NEJMoa1701329

Paik J, Duggan S. Volanesorsen: First Global Approval. Drugs. 2019;79:1349-54. doi: 10.1007/s40265-019-01168-z.

Graham MJ, Lee RG, Bell TA 3rd, Fu W, Mullick AE, Alexander VJ, et al. Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ Res. 2013;112:1479-90. doi: 10.1161/CIRCRESAHA.111.300367.

Lee RG, Graham MJ, Fu W, et al. Antisense suppression of serum apoC- -III improves hypertriglyceridemia and insulin sensitivity in multiple species. Diabetes, volume 62:Suppl 1A:LB14

Alexander V, Gaudet D, Cheng W, et al. An antisense inhibitor of apolipoprotein C-III significantly decreases apolipoprotein C-III, triglycerides, very- -low-density lipoprotein cholesterol and particle number, and increases high-density lipoprotein cholesterol and particle number in hypertriglyceri demic patients on a fibrate. J Am Coll Cardiol. 2014; 63: A1453.

Gaudet D, Alexander VJ, Baker BF, Brisson D, Tremblay K, Singleton W, et al. Antisense Inhibition of Apolipoprotein C-III in Patients with Hypertriglyceridemia. N Engl J Med. 2015;373:438-47. doi: 10.1056/NEJMoa1400283.

Gouni-Berthold I, Alexander V, Digenio A, et al. Apolipoprotein C-III inhibition with volanesorsen in patients with hypertriglyceridemia (COMPASS): a randomized, double-blind, placebo-controlled trial. Atherosclerosis Suppl. 2017;28:e1–e2 doi: https://doi.org/10.1016/j.jacl.2017.04.038

Gaudet D, Digenio A, Alexander V et al. The APPROACH study: a randomized, double blind, placebo-controlled, phase 3 study of volanesorsen administered subcutaneously to patients with familial chylomicronemia syndrome (FCS). J Clin Lipidol. 2017;11:814-5. doi: 10.1016/j.jacl.2017.04.071

Digenio A, Dunbar RL, Alexander VJ, Hompesch M, Morrow L, Lee RG, et al. Antisense-Mediated Lowering of Plasma Apolipoprotein C-III by Volanesorsen Improves Dyslipidemia and Insulin Sensitivity in Type 2 Diabetes. Diabetes Care. 2016;39:1408-15. doi: 10.2337/dc16-0126.

Gordts PL, Nock R, Son NH, Ramms B, Lew I, Gonzales JC, et al. ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors. J Clin Invest. 2016;126:2855-66. doi: 10.1172/JCI86610.

Johansen CT, Hegele RA. Genetic bases of hypertriglyceridemic phenotypes. Curr Opin Lipidol. 2011;22:247-53. doi: 10.1097/ MOL.0b013e3283471972.

Published

2021-12-23

How to Cite

1.
Colaço I, Araújo F, Aguiar P, Cruz D, Bourbon M, Sequeira Duarte J, Teixeira Veríssimo M. Familial Chylomicronaemia Syndrome (Fcs): A Diagnostic Algorithm. RPMI [Internet]. 2021 Dec. 23 [cited 2024 Dec. 17];28(4):369-77. Available from: https://revista.spmi.pt/index.php/rpmi/article/view/276

Issue

Section

Review Articles

Most read articles by the same author(s)

1 2 > >>